苹果酸从液泡中释放出来后

日期:2017-05-22类型:养花基础 

很多种类体内有白色乳汁或无色的粘液,这是一种多糖物质。有的专家指出,它们的细胞内特别含有大量的五碳糖,提高了细胞液浓度,增强了抗旱抗逆性。同时这种粘液和乳汁在植物受伤时可使伤口迅速结膜,既防止了体内水分散失又避免了病菌感染。栽培中利用这一特点,可以将一些截面积很大的球形、柱形种切顶扦插。
植物蒸腾

它们的形态和表皮的一些结构使它们的蒸腾量大大减少。它们的表皮有很厚的角质层,很多种类表皮被蜡被毛。气孔数远较其他植物少而且深埋在表皮凹陷的坑内。角质层扩散阻力很大,因此,这类植物失水明显地比其他植物少。资料表明,一株玉米一天失水3~4升,而一株树木状的大仙人掌一天只失水25毫升。仙人掌科的最小品种松露玉是气孔最少的植物,可以在干旱季节形成一种近乎死亡的状态,各种生理活动近乎停滞。

 

代谢方式
仙人掌类和多肉植物在代谢方式上和一般植物有所不同。其特点是气孔白天关闭减少蒸腾,夜间开放吸收CO₂,而且在一定范围内,气温越低,CO₂吸收越多。吸收的CO₂通过羧化形成苹果酸存于大液泡内,白天苹果酸脱羧放出CO₂进行光合作用,在一定的范围内,温度越高,脱羧越快。栽培上利用这个特点,即在一定范围内尽可能加大温室的昼夜温差,在晚上提高室内CO₂浓度等,可使这类植物加快生长。
夜间,大气中CO₂自气孔进入细胞质中,被磷酸烯醇式丙酮酸(PEP)羧化酶催化,与PEP结合形成草酰乙酸,再经苹果酸脱氢酶作用还原为苹果酸,贮于液泡中,其浓度每升可达100毫摩尔。苹果酸从细胞质通过液泡膜进入液泡是主动过程,而从液泡回到细胞质中则是被动过程。在日间,苹果酸从液泡中释放出来后,
经脱羧作用形成CO₂和C₃化合物(见四碳植物)。有两种脱羧酶可催化这个反应。有些植物中NADP(辅酶Ⅱ)~或NAD(辅酶Ⅰ)~苹果酸酶催化氧化脱羧,形成CO₂和丙酮酸,另一些植物中PEP羧激酶催化形成草酰乙酸,并脱羧产生CO₂及PEP。CO₂产生后,通过光合碳循环重新被固定,最终形成淀粉等糖类。在弱光下,尤其是气温高时,有一部分CO₂会被释放到大气中去。